Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Aug 2021 (v1), last revised 20 Aug 2021 (this version, v3)]
Title:Finding Representative Interpretations on Convolutional Neural Networks
View PDFAbstract:Interpreting the decision logic behind effective deep convolutional neural networks (CNN) on images complements the success of deep learning models. However, the existing methods can only interpret some specific decision logic on individual or a small number of images. To facilitate human understandability and generalization ability, it is important to develop representative interpretations that interpret common decision logics of a CNN on a large group of similar images, which reveal the common semantics data contributes to many closely related predictions. In this paper, we develop a novel unsupervised approach to produce a highly representative interpretation for a large number of similar images. We formulate the problem of finding representative interpretations as a co-clustering problem, and convert it into a submodular cost submodular cover problem based on a sample of the linear decision boundaries of a CNN. We also present a visualization and similarity ranking method. Our extensive experiments demonstrate the excellent performance of our method.
Submission history
From: Lingyang Chu [view email][v1] Fri, 13 Aug 2021 20:17:30 UTC (6,371 KB)
[v2] Tue, 17 Aug 2021 02:41:45 UTC (6,372 KB)
[v3] Fri, 20 Aug 2021 20:02:02 UTC (6,372 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.