Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Aug 2021]
Title:Adapting to Unseen Vendor Domains for MRI Lesion Segmentation
View PDFAbstract:One of the key limitations in machine learning models is poor performance on data that is out of the domain of the training distribution. This is especially true for image analysis in magnetic resonance (MR) imaging, as variations in hardware and software create non-standard intensities, contrasts, and noise distributions across scanners. Recently, image translation models have been proposed to augment data across domains to create synthetic data points. In this paper, we investigate the application an unsupervised image translation model to augment MR images from a source dataset to a target dataset. Specifically, we want to evaluate how well these models can create synthetic data points representative of the target dataset through image translation, and to see if a segmentation model trained these synthetic data points would approach the performance of a model trained directly on the target dataset. We consider three configurations of augmentation between datasets consisting of translation between images, between scanner vendors, and from labels to images. It was found that the segmentation models trained on synthetic data from labels to images configuration yielded the closest performance to the segmentation model trained directly on the target dataset. The Dice coeffcient score per each target vendor (GE, Siemens, Philips) for training on synthetic data was 0.63, 0.64, and 0.58, compared to training directly on target dataset was 0.65, 0.72, and 0.61.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.