Computer Science > Machine Learning
[Submitted on 14 Aug 2021]
Title:Optimal Approximation with Sparse Neural Networks and Applications
View PDFAbstract:We use deep sparsely connected neural networks to measure the complexity of a function class in $L^2(\mathbb R^d)$ by restricting connectivity and memory requirement for storing the neural networks. We also introduce representation system - a countable collection of functions to guide neural networks, since approximation theory with representation system has been well developed in Mathematics. We then prove the fundamental bound theorem, implying a quantity intrinsic to the function class itself can give information about the approximation ability of neural networks and representation system. We also provides a method for transferring existing theories about approximation by representation systems to that of neural networks, greatly amplifying the practical values of neural networks. Finally, we use neural networks to approximate B-spline functions, which are used to generate the B-spline curves. Then, we analyse the complexity of a class called $\beta$ cartoon-like functions using rate-distortion theory and wedgelets construction.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.