Mathematics > Optimization and Control
[Submitted on 14 Aug 2021 (v1), last revised 13 Nov 2022 (this version, v2)]
Title:Gradient Projection Newton Algorithm for Sparse Collaborative Learning Using Synthetic and Real Datasets of Applications
View PDFAbstract:Exploring the relationship among multiple sets of data from one same group enables practitioners to make better decisions in medical science and engineering. In this paper, we propose a sparse collaborative learning (SCL) model, an optimization with double-sparsity constraints, to process the problem with two sets of data and a shared response variable. It is capable of dealing with the classification problems or the regression problems dependent on the discreteness of the response variable as well as exploring the relationship between two datasets simultaneously. To solve SCL, we first present some necessary and sufficient optimality conditions and then design a gradient projection Newton algorithm which has proven to converge to a unique locally optimal solution globally with at least a quadratic convergence rate. Finally, the reported numerical experiments illustrate the efficiency of the proposed method.
Submission history
From: Shenglong Zhou [view email][v1] Sat, 14 Aug 2021 19:26:17 UTC (405 KB)
[v2] Sun, 13 Nov 2022 21:42:55 UTC (457 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.