Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Aug 2021 (v1), last revised 17 Aug 2021 (this version, v2)]
Title:Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB Images in the Wild
View PDFAbstract:This paper investigates the problem of reconstructing hyperspectral (HS) images from single RGB images captured by commercial cameras, \textbf{without} using paired HS and RGB images during training. To tackle this challenge, we propose a new lightweight and end-to-end learning-based framework. Specifically, on the basis of the intrinsic imaging degradation model of RGB images from HS images, we progressively spread the differences between input RGB images and re-projected RGB images from recovered HS images via effective unsupervised camera spectral response function estimation. To enable the learning without paired ground-truth HS images as supervision, we adopt the adversarial learning manner and boost it with a simple yet effective $\mathcal{L}_1$ gradient clipping scheme. Besides, we embed the semantic information of input RGB images to locally regularize the unsupervised learning, which is expected to promote pixels with identical semantics to have consistent spectral signatures. In addition to conducting quantitative experiments over two widely-used datasets for HS image reconstruction from synthetic RGB images, we also evaluate our method by applying recovered HS images from real RGB images to HS-based visual tracking. Extensive results show that our method significantly outperforms state-of-the-art unsupervised methods and even exceeds the latest supervised method under some settings. The source code is public available at this https URL.
Submission history
From: Zhiyu Zhu [view email][v1] Sun, 15 Aug 2021 05:19:44 UTC (7,590 KB)
[v2] Tue, 17 Aug 2021 03:36:48 UTC (7,590 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.