Computer Science > Information Theory
[Submitted on 15 Aug 2021]
Title:Joint Dynamic Passive Beamforming and Resource Allocation for IRS-Aided Full-Duplex WPCN
View PDFAbstract:This paper studies intelligent reflecting surface (IRS)-aided full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) broadcasts energy signals to multiple devices for their energy harvesting in the downlink (DL) and meanwhile receives information signals in the uplink (UL) with the help of IRS. Particularly, we propose three types of IRS beamforming configurations to strike a balance between the system performance and signaling overhead as well as implementation complexity. We first propose the fully dynamic IRS beamforming, where the IRS phase-shift vectors vary with each time slot for both DL wireless energy transfer (WET) and UL wireless information transmission (WIT). To further reduce signaling overhead and implementation complexity, we then study two special cases, namely, partially dynamic IRS beamforming and static IRS beamforming. For the former case, two different phase-shift vectors can be exploited for the DL WET and the UL WIT, respectively, whereas for the latter case, the same phase-shift vector needs to be applied for both DL and UL transmissions. We aim to maximize the system throughput by jointly optimizing the time allocation, HAP transmit power, and IRS phase shifts for the above three cases. Two efficient algorithms based on alternating optimization and penalty-based algorithms are respectively proposed for both perfect self-interference cancellation (SIC) case and imperfect SIC case by applying successive convex approximation and difference-of-convex optimization techniques. Simulation results demonstrate the benefits of IRS for enhancing the performance of FD-WPCN, and also show that the IRS-aided FD-WPCN is able to achieve significantly performance gain compared to its counterpart with half-duplex when the self-interference (SI) is properly suppressed.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.