Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Aug 2021]
Title:Exploring Temporal Coherence for More General Video Face Forgery Detection
View PDFAbstract:Although current face manipulation techniques achieve impressive performance regarding quality and controllability, they are struggling to generate temporal coherent face videos. In this work, we explore to take full advantage of the temporal coherence for video face forgery detection. To achieve this, we propose a novel end-to-end framework, which consists of two major stages. The first stage is a fully temporal convolution network (FTCN). The key insight of FTCN is to reduce the spatial convolution kernel size to 1, while maintaining the temporal convolution kernel size unchanged. We surprisingly find this special design can benefit the model for extracting the temporal features as well as improve the generalization capability. The second stage is a Temporal Transformer network, which aims to explore the long-term temporal coherence. The proposed framework is general and flexible, which can be directly trained from scratch without any pre-training models or external datasets. Extensive experiments show that our framework outperforms existing methods and remains effective when applied to detect new sorts of face forgery videos.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.