Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Aug 2021 (v1), last revised 22 Aug 2021 (this version, v2)]
Title:U-mesh: Human Correspondence Matching with Mesh Convolutional Networks
View PDFAbstract:The proliferation of 3D scanning technology has driven a need for methods to interpret geometric data, particularly for human subjects. In this paper we propose an elegant fusion of regression (bottom-up) and generative (top-down) methods to fit a parametric template model to raw scan meshes.
Our first major contribution is an intrinsic convolutional mesh U-net architecture that predicts pointwise correspondence to a template surface. Soft-correspondence is formulated as coordinates in a newly-constructed Cartesian space. Modeling correspondence as Euclidean proximity enables efficient optimization, both for network training and for the next step of the algorithm.
Our second contribution is a generative optimization algorithm that uses the U-net correspondence predictions to guide a parametric Iterative Closest Point registration. By employing pre-trained human surface parametric models we maximally leverage domain-specific prior knowledge.
The pairing of a mesh-convolutional network with generative model fitting enables us to predict correspondence for real human surface scans including occlusions, partialities, and varying genus (e.g. from self-contact). We evaluate the proposed method on the FAUST correspondence challenge where we achieve 20% (33%) improvement over state of the art methods for inter- (intra-) subject correspondence.
Submission history
From: Benjamin Groisser [view email][v1] Sun, 15 Aug 2021 08:58:45 UTC (31,845 KB)
[v2] Sun, 22 Aug 2021 09:56:34 UTC (31,845 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.