Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Aug 2021 (v1), last revised 17 Dec 2022 (this version, v3)]
Title:Temporal Action Segmentation with High-level Complex Activity Labels
View PDFAbstract:The temporal action segmentation task segments videos temporally and predicts action labels for all frames. Fully supervising such a segmentation model requires dense frame-wise action annotations, which are expensive and tedious to collect.
This work is the first to propose a Constituent Action Discovery (CAD) framework that only requires the video-wise high-level complex activity label as supervision for temporal action segmentation. The proposed approach automatically discovers constituent video actions using an activity classification task. Specifically, we define a finite number of latent action prototypes to construct video-level dual representations with which these prototypes are learned collectively through the activity classification training. This setting endows our approach with the capability to discover potentially shared actions across multiple complex activities.
Due to the lack of action-level supervision, we adopt the Hungarian matching algorithm to relate latent action prototypes to ground truth semantic classes for evaluation. We show that with the high-level supervision, the Hungarian matching can be extended from the existing video and activity levels to the global level. The global-level matching allows for action sharing across activities, which has never been considered in the literature before. Extensive experiments demonstrate that our discovered actions can help perform temporal action segmentation and activity recognition tasks.
Submission history
From: Guodong Ding [view email][v1] Sun, 15 Aug 2021 09:50:42 UTC (1,626 KB)
[v2] Tue, 28 Jun 2022 09:36:10 UTC (909 KB)
[v3] Sat, 17 Dec 2022 08:12:09 UTC (1,495 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.