Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Aug 2021 (v1), last revised 19 Sep 2021 (this version, v2)]
Title:A Cascaded Zoom-In Network for Patterned Fabric Defect Detection
View PDFAbstract:Nowadays, Deep Convolutional Neural Networks (DCNNs) are widely used in fabric defect detection, which come with the cost of expensive training and complex model parameters. With the observation that most fabrics are defect free in practice, a two-step Cascaded Zoom-In Network (CZI-Net) is proposed for patterned fabric defect detection. In the CZI-Net, the Aggregated HOG (A-HOG) and SIFT features are used to instead of simple convolution filters for feature extraction. Moreover, in order to extract more distinctive features, the feature representation layer and full connection layer are included in the CZI-Net. In practice, Most defect-free fabrics only involve in the first step of our method and avoid a costive computation in the second step, which makes very fast fabric detection. More importantly, we propose the Locality-constrained Reconstruction Error (LCRE) in the first step and Restrictive Locality-constrained Coding (RLC), Bag-of-Indexes (BoI) methods in the second step. We also analyse the connections between different coding methods and conclude that the index of visual words plays an essential role in the coding methods. In conclusion, experiments based on real-world datasets are implemented and demonstrate that our proposed method is not only computationally simple but also with high detection accuracy.
Submission history
From: Zhiwei Zhang [view email][v1] Sun, 15 Aug 2021 15:29:26 UTC (8,266 KB)
[v2] Sun, 19 Sep 2021 17:48:37 UTC (8,390 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.