Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Aug 2021]
Title:Weakly Supervised Temporal Anomaly Segmentation with Dynamic Time Warping
View PDFAbstract:Most recent studies on detecting and localizing temporal anomalies have mainly employed deep neural networks to learn the normal patterns of temporal data in an unsupervised manner. Unlike them, the goal of our work is to fully utilize instance-level (or weak) anomaly labels, which only indicate whether any anomalous events occurred or not in each instance of temporal data. In this paper, we present WETAS, a novel framework that effectively identifies anomalous temporal segments (i.e., consecutive time points) in an input instance. WETAS learns discriminative features from the instance-level labels so that it infers the sequential order of normal and anomalous segments within each instance, which can be used as a rough segmentation mask. Based on the dynamic time warping (DTW) alignment between the input instance and its segmentation mask, WETAS obtains the result of temporal segmentation, and simultaneously, it further enhances itself by using the mask as additional supervision. Our experiments show that WETAS considerably outperforms other baselines in terms of the localization of temporal anomalies, and also it provides more informative results than point-level detection methods.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.