Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 16 Aug 2021 (v1), last revised 18 Aug 2021 (this version, v2)]
Title:Constrains on optical emission of FAST-detected FRB 20181130B with GWAC synchronized observations
View PDFAbstract:Multi-wavelength simultaneous observations are essential to the constraints on the origin of fast radio bursts (FRBs). However, it is a significant observational challenge due to the nature of FRBs as transients with a radio millisecond duration, which occur randomly in the sky regardless of time and position. Here, we report the search for short-time fast optical bursts in the GWAC archived data associated with FRB 20181130B, which were detected by the Five Hundred Meter Spherical Radio Telescope (FAST) and recently reported. No new credible sources were detected in all single GWAC images with an exposure time of 10 s, including image with coverage of the expected arrival time in optical wavelength by taking the high dispersion measurements into account. Our results provide a limiting magnitude of 15.43$\pm0.04$ mag in R band, corresponding to a flux density of 1.66 Jy or 8.35 mag in AB system by assuming that the duration of the optical band is similar to that of the radio band of about 10 ms. This limiting magnitude makes the spectral index of $\alpha<0.367$ from optical to radio wavelength. The possible existence of longer duration optical emission was also investigated with an upper limits of 0.33 Jy (10.10 mag), 1.74 mJy (15.80 mag) and 0.16 mJy (18.39 mag) for the duration of 50 ms, 10 s and 6060 s, respectively. This undetected scenario could be partially attributed to the shallow detection capability, as well as the high inferred distance of FRB 20181130B and the low fluence in radio wavelength. The future detectability of optical flashes associated with nearby and bright FRBs are also discussed in this paper.
Submission history
From: Li-Ping Xin [view email][v1] Mon, 16 Aug 2021 07:08:57 UTC (4,285 KB)
[v2] Wed, 18 Aug 2021 03:07:42 UTC (4,283 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.