Quantitative Finance > Risk Management
[Submitted on 16 Aug 2021 (v1), last revised 2 Aug 2022 (this version, v3)]
Title:Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory
View PDFAbstract:This paper investigates a Pareto optimal insurance problem, where the insured maximizes her rank-dependent utility preference and the insurer is risk neutral and employs the mean-variance premium principle. To eliminate potential moral hazard issues, we only consider the so-called moral-hazard-free insurance contracts that obey the incentive compatibility constraint. The insurance problem is first formulated as a non-concave maximization problem involving Choquet expectation, then turned into a concave quantile optimization problem and finally solved by the calculus of variations method. The optimal contract is expressed by a second-order ordinary integro-differential equation with nonlocal operator. An effective numerical method is proposed to compute the optimal contract assuming the probability weighting function has a density. Also, we provide an example which is analytically solved.
Submission history
From: Zuo Quan Xu Dr. [view email][v1] Mon, 16 Aug 2021 07:24:11 UTC (17 KB)
[v2] Sun, 19 Jun 2022 13:34:13 UTC (19 KB)
[v3] Tue, 2 Aug 2022 01:25:32 UTC (19 KB)
Current browse context:
q-fin.RM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.