Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Aug 2021]
Title:Video Person Re-identification using Attribute-enhanced Features
View PDFAbstract:Video-based person re-identification (Re-ID) which aims to associate people across non-overlapping cameras using surveillance video is a challenging task. Pedestrian attribute, such as gender, age and clothing characteristics contains rich and supplementary information but is less explored in video person Re-ID. In this work, we propose a novel network architecture named Attribute Salience Assisted Network (ASA-Net) for attribute-assisted video person Re-ID, which achieved considerable improvement to existing works by two this http URL, to learn a better separation of the target from background, we propose to learn the visual attention from middle-level attribute instead of high-level identities. The proposed Attribute Salient Region Enhance (ASRE) module can attend more accurately on the body of pedestrian. Second, we found that many identity-irrelevant but object or subject-relevant factors like the view angle and movement of the target pedestrian can greatly influence the two dimensional appearance of a pedestrian. This problem can be mitigated by investigating both identity-relevant and identity-irrelevant attributes via a novel triplet loss which is referred as the Pose~\&~Motion-Invariant (PMI) triplet loss.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.