Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Aug 2021]
Title:Towards Efficient and Data Agnostic Image Classification Training Pipeline for Embedded Systems
View PDFAbstract:Nowadays deep learning-based methods have achieved a remarkable progress at the image classification task among a wide range of commonly used datasets (ImageNet, CIFAR, SVHN, Caltech 101, SUN397, etc.). SOTA performance on each of the mentioned datasets is obtained by careful tuning of the model architecture and training tricks according to the properties of the target data. Although this approach allows setting academic records, it is unrealistic that an average data scientist would have enough resources to build a sophisticated training pipeline for every image classification task he meets in practice. This work is focusing on reviewing the latest augmentation and regularization methods for the image classification and exploring ways to automatically choose some of the most important hyperparameters: total number of epochs, initial learning rate value and it's schedule. Having a training procedure equipped with a lightweight modern CNN architecture (like bileNetV3 or EfficientNet), sufficient level of regularization and adaptive to data learning rate schedule, we can achieve a reasonable performance on a variety of downstream image classification tasks without manual tuning of parameters to each particular task. Resulting models are computationally efficient and can be deployed to CPU using the OpenVINO toolkit. Source code is available as a part of the OpenVINO Training Extensions (this https URL).
Submission history
From: Vladislav Sovrasov [view email][v1] Mon, 16 Aug 2021 12:38:05 UTC (125 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.