Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Aug 2021]
Title:On the Importance of Encrypting Deep Features
View PDFAbstract:In this study, we analyze model inversion attacks with only two assumptions: feature vectors of user data are known, and a black-box API for inference is provided. On the one hand, limitations of existing studies are addressed by opting for a more practical setting. Experiments have been conducted on state-of-the-art models in person re-identification, and two attack scenarios (i.e., recognizing auxiliary attributes and reconstructing user data) are investigated. Results show that an adversary could successfully infer sensitive information even under severe constraints. On the other hand, it is advisable to encrypt feature vectors, especially for a machine learning model in production. As an alternative to traditional encryption methods such as AES, a simple yet effective method termed ShuffleBits is presented. More specifically, the binary sequence of each floating-point number gets shuffled. Deployed using the one-time pad scheme, it serves as a plug-and-play module that is applicable to any neural network, and the resulting model directly outputs deep features in encrypted form. Source code is publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.