Mathematics > Optimization and Control
[Submitted on 16 Aug 2021]
Title:Density control of interacting agent systems
View PDFAbstract:We consider the problem of controlling the group behavior of a large number of dynamic systems that are constantly interacting with each other. These systems are assumed to have identical dynamics (e.g., birds flock, robot swarm) and their group behavior can be modeled by a distribution. Thus, this problem can be viewed as an optimal control problem over the space of distributions. We propose a novel algorithm to compute a feedback control strategy so that, when adopted by the agents, the distribution of them would be transformed from an initial one to a target one over a finite time window. Our method is built on optimal transport theory but differs significantly from existing work in this area in that our method models the interactions among agents explicitly. From an algorithmic point of view, our algorithm is based on a generalized version of the proximal gradient descent algorithm and has a convergence guarantee with a sublinear rate. We further extend our framework to account for the scenarios where the agents are from multiple species. In the linear quadratic setting, the solution is characterized by coupled Riccati equations which can be solved in closed-form. Finally, several numerical examples are presented to illustrate our framework.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.