Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Aug 2021 (v1), last revised 18 Aug 2021 (this version, v2)]
Title:Learning Dynamic Interpolation for Extremely Sparse Light Fields with Wide Baselines
View PDFAbstract:In this paper, we tackle the problem of dense light field (LF) reconstruction from sparsely-sampled ones with wide baselines and propose a learnable model, namely dynamic interpolation, to replace the commonly-used geometry warping operation. Specifically, with the estimated geometric relation between input views, we first construct a lightweight neural network to dynamically learn weights for interpolating neighbouring pixels from input views to synthesize each pixel of novel views independently. In contrast to the fixed and content-independent weights employed in the geometry warping operation, the learned interpolation weights implicitly incorporate the correspondences between the source and novel views and adapt to different image content information. Then, we recover the spatial correlation between the independently synthesized pixels of each novel view by referring to that of input views using a geometry-based spatial refinement module. We also constrain the angular correlation between the novel views through a disparity-oriented LF structure loss. Experimental results on LF datasets with wide baselines show that the reconstructed LFs achieve much higher PSNR/SSIM and preserve the LF parallax structure better than state-of-the-art methods. The source code is publicly available at this https URL.
Submission history
From: Mantang Guo [view email][v1] Tue, 17 Aug 2021 02:20:03 UTC (5,870 KB)
[v2] Wed, 18 Aug 2021 12:29:40 UTC (5,869 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.