Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Aug 2021 (v1), last revised 12 Oct 2021 (this version, v3)]
Title:G-DetKD: Towards General Distillation Framework for Object Detectors via Contrastive and Semantic-guided Feature Imitation
View PDFAbstract:In this paper, we investigate the knowledge distillation (KD) strategy for object detection and propose an effective framework applicable to both homogeneous and heterogeneous student-teacher pairs. The conventional feature imitation paradigm introduces imitation masks to focus on informative foreground areas while excluding the background noises. However, we find that those methods fail to fully utilize the semantic information in all feature pyramid levels, which leads to inefficiency for knowledge distillation between FPN-based detectors. To this end, we propose a novel semantic-guided feature imitation technique, which automatically performs soft matching between feature pairs across all pyramid levels to provide the optimal guidance to the student. To push the envelop even further, we introduce contrastive distillation to effectively capture the information encoded in the relationship between different feature regions. Finally, we propose a generalized detection KD pipeline, which is capable of distilling both homogeneous and heterogeneous detector pairs. Our method consistently outperforms the existing detection KD techniques, and works when (1) components in the framework are used separately and in conjunction; (2) for both homogeneous and heterogenous student-teacher pairs and (3) on multiple detection benchmarks. With a powerful X101-FasterRCNN-Instaboost detector as the teacher, R50-FasterRCNN reaches 44.0% AP, R50-RetinaNet reaches 43.3% AP and R50-FCOS reaches 43.1% AP on COCO dataset.
Submission history
From: Renjie Pi [view email][v1] Tue, 17 Aug 2021 07:44:27 UTC (1,940 KB)
[v2] Fri, 20 Aug 2021 16:50:54 UTC (1,941 KB)
[v3] Tue, 12 Oct 2021 13:23:48 UTC (3,709 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.