Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Aug 2021]
Title:Nonlinear Autoregression with Convergent Dynamics on Novel Computational Platforms
View PDFAbstract:Nonlinear stochastic modeling is useful for describing complex engineering systems. Meanwhile, neuromorphic (brain-inspired) computing paradigms are developing to tackle tasks that are challenging and resource intensive on digital computers. An emerging scheme is reservoir computing which exploits nonlinear dynamical systems for temporal information processing. This paper introduces reservoir computers with output feedback as stationary and ergodic infinite-order nonlinear autoregressive models. We highlight the versatility of this approach by employing classical and quantum reservoir computers to model synthetic and real data sets, further exploring their potential for control applications.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.