Computer Science > Information Theory
[Submitted on 18 Aug 2021 (v1), last revised 21 Aug 2021 (this version, v2)]
Title:Low-Complexity Algorithm for Outage Optimal Resource Allocation in Energy Harvesting-Based UAV Identification Networks
View PDFAbstract:We study an unmanned aerial vehicle (UAV) identification network equipped with an energy harvesting (EH) technique. In the network, the UAVs harvest energy through radio frequency (RF) signals transmitted from ground control stations (GCSs) and then transmit their identification information to the ground receiver station (GRS). Specifically, we first derive a closed-form expression of the outage probability to evaluate the network performance. Then we obtain the closed-form expression of the optimal time allocation when the bandwidth is equally allocated to the UAVs. We also propose a fast-converging algorithm for time and the bandwidth allocation, which is necessary for the UAV environment with high mobility, to optimize the outage performance of EH-based UAV identification network. Simulation results show that the proposed algorithm outperforms the conventional bisection algorithm and achieves near-optimal performance.
Submission history
From: Jae Cheol Park [view email][v1] Wed, 18 Aug 2021 07:42:44 UTC (607 KB)
[v2] Sat, 21 Aug 2021 04:12:52 UTC (501 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.