High Energy Physics - Phenomenology
[Submitted on 18 Aug 2021]
Title:Two dark matter candidates: the case of inert doublet and singlet scalars
View PDFAbstract:We consider a multi-component dark matter model where the dark sector contains a scalar doublet and a complex scalar singlet. We impose a discrete $Z_4$ symmetry to ensure such that the lightest component of the doublet, $\tilde{A}$, and the singlet, $\tilde{S}$, are both stable. Interactions between the dark sectors impact significantly dark matter observables, they allow in particular to significantly relax the direct detection constraints on the model. To determine the parameter space that satisfies relic density, theoretical and collider constraints as well as direct and indirect detection limits, we perform two separate scans, the first includes the full parameter space of the model while the second is dedicated to scenarios with a compressed inert doublet spectrum. In the first case we find that the singlet is generally the dominant dark matter component while in the compressed case the doublet is more likely to be the dominant dark matter component. In both cases we find that the two dark matter particles can have masses that ranges from around $m_h/2$ to over the TeV scale. We emphasize the interplay between cosmological astrophysical and collider constraints and show that a large fraction of the parameter space that escapes current constraints is within the sensitivity reach of future detectors such as XENON-nT, Darwin or CTA. Important collider signatures are mostly found in the compressed spectrum case with the possibility of probing the model with searches for heavy stable charged particles and disappearing tracks. We also show that semi-annihilation processes such as $\tilde{S}\tilde{S}\to \tilde{A}Z$ could give the dominant signature in indirect detection searches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.