Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Aug 2021 (v1), last revised 24 Jul 2022 (this version, v2)]
Title:Concurrent Active Learning in Autonomous Airborne Source Search: Dual Control for Exploration and Exploitation
View PDFAbstract:In this paper, a concurrent learning framework is developed for source search in an unknown environment using autonomous platforms equipped with onboard sensors. Distinct from the existing solutions that require significant computational power for Bayesian estimation and path planning, the proposed solution is computationally affordable for onboard processors. A new concept of concurrent learning using multiple parallel estimators is proposed to learn the operational environment and quantify estimation uncertainty. The search agent is empowered with dual capability of exploiting current estimated parameters to track the source and probing the environment to reduce the impacts of uncertainty, namely Concurrent Learning based Dual Control for Exploration and Exploitation (CL-DCEE). In this setting, the control action not only minimises the tracking error between future agent's position and estimated source location, but also the uncertainty of predicted estimation. More importantly, the rigorous proven properties such as the convergence of CL-DCEE algorithm are established under mild assumptions on noises, and the impact of noises on the search performance is examined. Simulation results are provided to validate the effectiveness of the proposed CL-DCEE algorithm. Compared with the information-theoretic approach, CL-DCEE not only guarantees convergence, but produces better search performance and consumes much less computational time.
Submission history
From: Zhongguo Li [view email][v1] Wed, 18 Aug 2021 09:25:27 UTC (3,852 KB)
[v2] Sun, 24 Jul 2022 08:42:36 UTC (4,329 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.