Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2021]
Title:Image Collation: Matching illustrations in manuscripts
View PDFAbstract:Illustrations are an essential transmission instrument. For an historian, the first step in studying their evolution in a corpus of similar manuscripts is to identify which ones correspond to each other. This image collation task is daunting for manuscripts separated by many lost copies, spreading over centuries, which might have been completely re-organized and greatly modified to adapt to novel knowledge or belief and include hundreds of illustrations. Our contributions in this paper are threefold. First, we introduce the task of illustration collation and a large annotated public dataset to evaluate solutions, including 6 manuscripts of 2 different texts with more than 2 000 illustrations and 1 200 annotated correspondences. Second, we analyze state of the art similarity measures for this task and show that they succeed in simple cases but struggle for large manuscripts when the illustrations have undergone very significant changes and are discriminated only by fine details. Finally, we show clear evidence that significant performance boosts can be expected by exploiting cycle-consistent correspondences. Our code and data are available on this http URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.