Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2021]
Title:Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision
View PDFAbstract:Learning RAW-to-sRGB mapping has drawn increasing attention in recent years, wherein an input raw image is trained to imitate the target sRGB image captured by another camera. However, the severe color inconsistency makes it very challenging to generate well-aligned training pairs of input raw and target sRGB images. While learning with inaccurately aligned supervision is prone to causing pixel shift and producing blurry results. In this paper, we circumvent such issue by presenting a joint learning model for image alignment and RAW-to-sRGB mapping. To diminish the effect of color inconsistency in image alignment, we introduce to use a global color mapping (GCM) module to generate an initial sRGB image given the input raw image, which can keep the spatial location of the pixels unchanged, and the target sRGB image is utilized to guide GCM for converting the color towards it. Then a pre-trained optical flow estimation network (e.g., PWC-Net) is deployed to warp the target sRGB image to align with the GCM output. To alleviate the effect of inaccurately aligned supervision, the warped target sRGB image is leveraged to learn RAW-to-sRGB mapping. When training is done, the GCM module and optical flow network can be detached, thereby bringing no extra computation cost for inference. Experiments show that our method performs favorably against state-of-the-arts on ZRR and SR-RAW datasets. With our joint learning model, a light-weight backbone can achieve better quantitative and qualitative performance on ZRR dataset. Codes are available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.