Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2021]
Title:Towards Deep and Efficient: A Deep Siamese Self-Attention Fully Efficient Convolutional Network for Change Detection in VHR Images
View PDFAbstract:Recently, FCNs have attracted widespread attention in the CD field. In pursuit of better CD performance, it has become a tendency to design deeper and more complicated FCNs, which inevitably brings about huge numbers of parameters and an unbearable computational burden. With the goal of designing a quite deep architecture to obtain more precise CD results while simultaneously decreasing parameter numbers to improve efficiency, in this work, we present a very deep and efficient CD network, entitled EffCDNet. In EffCDNet, to reduce the numerous parameters associated with deep architecture, an efficient convolution consisting of depth-wise convolution and group convolution with a channel shuffle mechanism is introduced to replace standard convolutional layers. In terms of the specific network architecture, EffCDNet does not use mainstream UNet-like architecture, but rather adopts the architecture with a very deep encoder and a lightweight decoder. In the very deep encoder, two very deep siamese streams stacked by efficient convolution first extract two highly representative and informative feature maps from input image-pairs. Subsequently, an efficient ASPP module is designed to capture multi-scale change information. In the lightweight decoder, a recurrent criss-cross self-attention (RCCA) module is applied to efficiently utilize non-local similar feature representations to enhance discriminability for each pixel, thus effectively separating the changed and unchanged regions. Moreover, to tackle the optimization problem in confused pixels, two novel loss functions based on information entropy are presented. On two challenging CD datasets, our approach outperforms other SOTA FCN-based methods, with only benchmark-level parameter numbers and quite low computational overhead.
Submission history
From: Hongruixuan Chen [view email][v1] Wed, 18 Aug 2021 14:02:38 UTC (31,361 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.