Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2021 (v1), last revised 9 Jan 2022 (this version, v2)]
Title:Specificity-preserving RGB-D Saliency Detection
View PDFAbstract:Salient object detection (SOD) on RGB and depth images has attracted more and more research interests, due to its effectiveness and the fact that depth cues can now be conveniently captured. Existing RGB-D SOD models usually adopt different fusion strategies to learn a shared representation from the two modalities (\ie, RGB and depth), while few methods explicitly consider how to preserve modality-specific characteristics. In this study, we propose a novel framework, termed SPNet} (Specificity-preserving network), which benefits SOD performance by exploring both the shared information and modality-specific properties (\eg, specificity). Specifically, we propose to adopt two modality-specific networks and a shared learning network to generate individual and shared saliency prediction maps, respectively. To effectively fuse cross-modal features in the shared learning network, we propose a cross-enhanced integration module (CIM) and then propagate the fused feature to the next layer for integrating cross-level information. Moreover, to capture rich complementary multi-modal information for boosting the SOD performance, we propose a multi-modal feature aggregation (MFA) module to integrate the modality-specific features from each individual decoder into the shared decoder. By using a skip connection, the hierarchical features between the encoder and decoder layers can be fully combined. Extensive experiments demonstrate that our~\ours~outperforms cutting-edge approaches on six popular RGB-D SOD and three camouflaged object detection benchmarks. The project is publicly available at: this https URL.
Submission history
From: Tao Zhou [view email][v1] Wed, 18 Aug 2021 14:14:22 UTC (4,300 KB)
[v2] Sun, 9 Jan 2022 02:59:30 UTC (1,747 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.