Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2021 (v1), last revised 28 Jul 2022 (this version, v2)]
Title:ALLNet: A Hybrid Convolutional Neural Network to Improve Diagnosis of Acute Lymphocytic Leukemia (ALL) in White Blood Cells
View PDFAbstract:Due to morphological similarity at the microscopic level, making an accurate and time-sensitive distinction between blood cells affected by Acute Lymphocytic Leukemia (ALL) and their healthy counterparts calls for the usage of machine learning architectures. However, three of the most common models, VGG, ResNet, and Inception, each come with their own set of flaws with room for improvement which demands the need for a superior model. ALLNet, the proposed hybrid convolutional neural network architecture, consists of a combination of the VGG, ResNet, and Inception models. The ALL Challenge dataset of ISBI 2019 (available here) contains 10,691 images of white blood cells which were used to train and test the models. 7,272 of the images in the dataset are of cells with ALL and 3,419 of them are of healthy cells. Of the images, 60% were used to train the model, 20% were used for the cross-validation set, and 20% were used for the test set. ALLNet outperformed the VGG, ResNet, and the Inception models across the board, achieving an accuracy of 92.6567%, a sensitivity of 95.5304%, a specificity of 85.9155%, an AUC score of 0.966347, and an F1 score of 0.94803 in the cross-validation set. In the test set, ALLNet achieved an accuracy of 92.0991%, a sensitivity of 96.5446%, a specificity of 82.8035%, an AUC score of 0.959972, and an F1 score of 0.942963. The utilization of ALLNet in the clinical workspace can better treat the thousands of people suffering from ALL across the world, many of whom are children.
Submission history
From: Sai Mattapalli [view email][v1] Wed, 18 Aug 2021 15:24:53 UTC (970 KB)
[v2] Thu, 28 Jul 2022 16:34:15 UTC (644 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.