Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2021 (v1), last revised 7 Apr 2022 (this version, v2)]
Title:Scarce Data Driven Deep Learning of Drones via Generalized Data Distribution Space
View PDFAbstract:Increased drone proliferation in civilian and professional settings has created new threat vectors for airports and national infrastructures. The economic damage for a single major airport from drone incursions is estimated to be millions per day. Due to the lack of diverse drone training data, accurate training of deep learning detection algorithms under scarce data is an open challenge. Existing methods largely rely on collecting diverse and comprehensive experimental drone footage data, artificially induced data augmentation, transfer and meta-learning, as well as physics-informed learning. However, these methods cannot guarantee capturing diverse drone designs and fully understanding the deep feature space of drones. Here, we show how understanding the general distribution of the drone data via a Generative Adversarial Network (GAN) and explaining the missing features using Topological Data Analysis (TDA) - can allow us to acquire missing data to achieve rapid and more accurate learning. We demonstrate our results on a drone image dataset, which contains both real drone images as well as simulated images from computer-aided design. When compared to random data collection (usual practice - discriminator accuracy of 94.67\% after 200 epochs), our proposed GAN-TDA informed data collection method offers a significant 4\% improvement (99.42\% after 200 epochs). We believe that this approach of exploiting general data distribution knowledge form neural networks can be applied to a wide range of scarce data open challenges.
Submission history
From: Schyler Chengyao Sun [view email][v1] Wed, 18 Aug 2021 17:07:32 UTC (3,212 KB)
[v2] Thu, 7 Apr 2022 16:28:36 UTC (3,742 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.