Mathematics > Classical Analysis and ODEs
[Submitted on 18 Aug 2021]
Title:Dynamically learning the parameters of a chaotic system using partial observations
View PDFAbstract:Motivated by recent progress in data assimilation, we develop an algorithm to dynamically learn the parameters of a chaotic system from partial observations. Under reasonable assumptions, we rigorously establish the convergence of this algorithm to the correct parameters when the system in question is the classic three-dimensional Lorenz system. Computationally, we demonstrate the efficacy of this algorithm on the Lorenz system by recovering any proper subset of the three non-dimensional parameters of the system, so long as a corresponding subset of the state is observable. We also provide computational evidence that this algorithm works well beyond the hypotheses required in the rigorous analysis, including in the presence of noisy observations, stochastic forcing, and the case where the observations are discrete and sparse in time.
Current browse context:
math.CA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.