Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2021]
Title:STAR: Noisy Semi-Supervised Transfer Learning for Visual Classification
View PDFAbstract:Semi-supervised learning (SSL) has proven to be effective at leveraging large-scale unlabeled data to mitigate the dependency on labeled data in order to learn better models for visual recognition and classification tasks. However, recent SSL methods rely on unlabeled image data at a scale of billions to work well. This becomes infeasible for tasks with relatively fewer unlabeled data in terms of runtime, memory and data acquisition. To address this issue, we propose noisy semi-supervised transfer learning, an efficient SSL approach that integrates transfer learning and self-training with noisy student into a single framework, which is tailored for tasks that can leverage unlabeled image data on a scale of thousands. We evaluate our method on both binary and multi-class classification tasks, where the objective is to identify whether an image displays people practicing sports or the type of sport, as well as to identify the pose from a pool of popular yoga poses. Extensive experiments and ablation studies demonstrate that by leveraging unlabeled data, our proposed framework significantly improves visual classification, especially in multi-class classification settings compared to state-of-the-art methods. Moreover, incorporating transfer learning not only improves classification performance, but also requires 6x less compute time and 5x less memory. We also show that our method boosts robustness of visual classification models, even without specifically optimizing for adversarial robustness.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.