Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 19 Aug 2021]
Title:A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties
View PDFAbstract:Modern electric power systems have witnessed rapidly increasing penetration of renewable energy, storage, electrical vehicles and various demand response resources. The electric infrastructure planning is thus facing more challenges due to the variability and uncertainties arising from the diverse new resources. This study aims to develop a multistage and multiscale stochastic mixed integer programming (MM-SMIP) model to capture both the coarse-temporal-scale uncertainties, such as investment cost and long-run demand stochasticity, and fine-temporal-scale uncertainties, such as hourly renewable energy output and electricity demand uncertainties, for the power system capacity expansion problem. To be applied to a real power system, the resulting model will lead to extremely large-scale mixed integer programming problems, which suffer not only the well-known curse of dimensionality, but also computational difficulties with a vast number of integer variables at each stage. In addressing such challenges associated with the MM-SMIP model, we propose a nested cross decomposition algorithm that consists of two layers of decomposition, that is, the Dantzig-Wolfe decomposition and L-shaped decomposition. The algorithm exhibits promising computational performance under our numerical study, and is especially amenable to parallel computing, which will also be demonstrated through the computational results.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.