High Energy Physics - Theory
[Submitted on 19 Aug 2021 (v1), last revised 8 Nov 2021 (this version, v3)]
Title:Sparse SYK and traversable wormholes
View PDFAbstract:We investigate two sparse Sachdev-Ye-Kitaev (SYK) systems coupled by a bilinear term as a holographic quantum mechanical description of an eternal traversable wormhole in the low temperature limit. Each SYK system consists of $N$ Majorana fermions coupled by random $q$-body interactions. The degree of sparseness is captured by a regular hypergraph in such a way that the Hamiltonian contains exactly $k\,N$ independent terms. We improve on the theoretical understanding of the sparseness property by using known measures of hypergraph expansion. We show that the sparse version of the two coupled SYK model is gapped with a ground state close to a thermofield double state. Using Krylov subspace and parallelization techniques, we simulate the system for $q=4$ and $q=8.$ The sparsity of the model allows us to explore larger values of $N$ than the ones existing in the literature for the all-to-all SYK. We analyze in detail the two-point functions and the transmission amplitude of signals between the two systems. We identify a range of parameters where revivals obey the scaling predicted by holography and signals can be interpreted as traversing the wormhole.
Submission history
From: Anderson Misobuchi [view email][v1] Thu, 19 Aug 2021 17:26:29 UTC (1,340 KB)
[v2] Mon, 23 Aug 2021 17:54:24 UTC (1,353 KB)
[v3] Mon, 8 Nov 2021 19:42:31 UTC (1,381 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.