Computer Science > Machine Learning
[Submitted on 20 Aug 2021]
Title:Mitigating Greenhouse Gas Emissions Through Generative Adversarial Networks Based Wildfire Prediction
View PDFAbstract:Over the past decade, the number of wildfire has increased significantly around the world, especially in the State of California. The high-level concentration of greenhouse gas (GHG) emitted by wildfires aggravates global warming that further increases the risk of more fires. Therefore, an accurate prediction of wildfire occurrence greatly helps in preventing large-scale and long-lasting wildfires and reducing the consequent GHG emissions. Various methods have been explored for wildfire risk prediction. However, the complex correlations among a lot of natural and human factors and wildfire ignition make the prediction task very challenging. In this paper, we develop a deep learning based data augmentation approach for wildfire risk prediction. We build a dataset consisting of diverse features responsible for fire ignition and utilize a conditional tabular generative adversarial network to explore the underlying patterns between the target value of risk levels and all involved features. For fair and comprehensive comparisons, we compare our proposed scheme with five other baseline methods where the former outperformed most of them. To corroborate the robustness, we have also tested the performance of our method with another dataset that also resulted in better efficiency. By adopting the proposed method, we can take preventive strategies of wildfire mitigation to reduce global GHG emissions.
Submission history
From: Sifat-E-Tanzim Chowdhury [view email][v1] Fri, 20 Aug 2021 00:36:30 UTC (1,543 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.