Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Aug 2021]
Title:Discriminative Domain-Invariant Adversarial Network for Deep Domain Generalization
View PDFAbstract:Domain generalization approaches aim to learn a domain invariant prediction model for unknown target domains from multiple training source domains with different distributions. Significant efforts have recently been committed to broad domain generalization, which is a challenging and topical problem in machine learning and computer vision communities. Most previous domain generalization approaches assume that the conditional distribution across the domains remain the same across the source domains and learn a domain invariant model by minimizing the marginal distributions. However, the assumption of a stable conditional distribution of the training source domains does not really hold in practice. The hyperplane learned from the source domains will easily misclassify samples scattered at the boundary of clusters or far from their corresponding class centres. To address the above two drawbacks, we propose a discriminative domain-invariant adversarial network (DDIAN) for domain generalization. The discriminativeness of the features are guaranteed through a discriminative feature module and domain-invariant features are guaranteed through the global domain and local sub-domain alignment modules. Extensive experiments on several benchmarks show that DDIAN achieves better prediction on unseen target data during training compared to state-of-the-art domain generalization approaches.
Submission history
From: Mohammad Mahfujur Rahman [view email][v1] Fri, 20 Aug 2021 04:24:12 UTC (3,142 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.