Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Aug 2021]
Title:Out-of-boundary View Synthesis Towards Full-Frame Video Stabilization
View PDFAbstract:Warping-based video stabilizers smooth camera trajectory by constraining each pixel's displacement and warp stabilized frames from unstable ones accordingly. However, since the view outside the boundary is not available during warping, the resulting holes around the boundary of the stabilized frame must be discarded (i.e., cropping) to maintain visual consistency, and thus does leads to a tradeoff between stability and cropping ratio. In this paper, we make a first attempt to address this issue by proposing a new Out-of-boundary View Synthesis (OVS) method. By the nature of spatial coherence between adjacent frames and within each frame, OVS extrapolates the out-of-boundary view by aligning adjacent frames to each reference one. Technically, it first calculates the optical flow and propagates it to the outer boundary region according to the affinity, and then warps pixels accordingly. OVS can be integrated into existing warping-based stabilizers as a plug-and-play module to significantly improve the cropping ratio of the stabilized results. In addition, stability is improved because the jitter amplification effect caused by cropping and resizing is reduced. Experimental results on the NUS benchmark show that OVS can improve the performance of five representative state-of-the-art methods in terms of objective metrics and subjective visual quality. The code is publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.