Electrical Engineering and Systems Science > Systems and Control
[Submitted on 20 Aug 2021]
Title:Multi-Agent Deep Deterministic Policy Gradient Algorithm for Peer-to-Peer Energy Trading Considering Distribution Network Constraints
View PDFAbstract:In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the need to satisfy distribution network constraints, it is challenging for prosumers to obtain optimal energy trading decisions that minimize their individual energy costs. To address the challenge, we first formulate the above problem as a Markov decision process and propose a multi-agent deep deterministic policy gradient algorithm to learn optimal energy trading decisions. To satisfy the distribution network constraints, we propose distribution network tariffs which we incorporate in the algorithm as incentives to incentivize energy trading decisions that help to satisfy the constraints and penalize the decisions that violate them. The proposed algorithm is model-free and allows the agents to learn the optimal energy trading decisions without having prior information about other agents in the network. Simulation results based on real-world datasets show the effectiveness and robustness of the proposed algorithm.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.