Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Aug 2021 (v1), last revised 8 Apr 2022 (this version, v2)]
Title:PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier
View PDFAbstract:The adversarial patch attack against image classification models aims to inject adversarially crafted pixels within a restricted image region (i.e., a patch) for inducing model misclassification. This attack can be realized in the physical world by printing and attaching the patch to the victim object; thus, it imposes a real-world threat to computer vision systems. To counter this threat, we design PatchCleanser as a certifiably robust defense against adversarial patches. In PatchCleanser, we perform two rounds of pixel masking on the input image to neutralize the effect of the adversarial patch. This image-space operation makes PatchCleanser compatible with any state-of-the-art image classifier for achieving high accuracy. Furthermore, we can prove that PatchCleanser will always predict the correct class labels on certain images against any adaptive white-box attacker within our threat model, achieving certified robustness. We extensively evaluate PatchCleanser on the ImageNet, ImageNette, CIFAR-10, CIFAR-100, SVHN, and Flowers-102 datasets and demonstrate that our defense achieves similar clean accuracy as state-of-the-art classification models and also significantly improves certified robustness from prior works. Remarkably, PatchCleanser achieves 83.9% top-1 clean accuracy and 62.1% top-1 certified robust accuracy against a 2%-pixel square patch anywhere on the image for the 1000-class ImageNet dataset.
Submission history
From: Chong Xiang [view email][v1] Fri, 20 Aug 2021 12:09:33 UTC (1,875 KB)
[v2] Fri, 8 Apr 2022 18:52:45 UTC (4,889 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.