Mathematics > Optimization and Control
[Submitted on 20 Aug 2021]
Title:Detour Dual Optimal Inequalities for Column Generation with Application to Routing and Location
View PDFAbstract:We consider the problem of accelerating column generation (CG) for logistics optimization problems using vehicle routing as an example. Without loss of generality, we focus on the Capacitated Vehicle Routing Problem (CVRP) via the addition of a new class of dual optimal inequalities (DOI) that incorporate information about detours from the vehicle routes. These inequalities extend the Smooth-DOI recently introduced in the literature for the solution of certain classes of set-covering problems by CG. The Detour-DOI introduced in this article permit low cost swap operations between items on a given active route with items near to other items on that route to estimate (and bound) the values of the dual variables. Smooth-DOI in contrast only permit low cost swap operations between nearby items. The use of Detour-DOI permits a faster convergence of CG without weakening the linear programming relaxation. We then argue that these DOI can also be conveniently applied to single source capacitated facility location problems. These problems have been shown to be equivalent to a broad class of logistics optimization problems that include, for example telecommunication network design and production planning. The importance of developing vastly more efficient column generation solvers cannot be overstated. Detour-DOI, which permit large numbers of columns to be expressed with a finite set of variables, contributes to this important endeavor.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.