Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Aug 2021]
Title:Zoom, Enhance! Measuring Surveillance GAN Up-sampling
View PDFAbstract:Deep Neural Networks have been very successfully used for many computer vision and pattern recognition applications. While Convolutional Neural Networks(CNNs) have shown the path to state of art image classifications, Generative Adversarial Networks or GANs have provided state of art capabilities in image generation. In this paper we extend the applications of CNNs and GANs to experiment with up-sampling techniques in the domains of security and surveillance. Through this work we evaluate, compare and contrast the state of art techniques in both CNN and GAN based image and video up-sampling in the surveillance domain. As a result of this study we also provide experimental evidence to establish DISTS as a stronger Image Quality Assessment(IQA) metric for comparing GAN Based Image Up-sampling in the surveillance domain.
Submission history
From: Utkarsh Contractor [view email][v1] Fri, 20 Aug 2021 17:21:43 UTC (7,715 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.