Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Aug 2021 (v1), last revised 25 Aug 2021 (this version, v2)]
Title:Early-exit deep neural networks for distorted images: providing an efficient edge offloading
View PDFAbstract:Edge offloading for deep neural networks (DNNs) can be adaptive to the input's complexity by using early-exit DNNs. These DNNs have side branches throughout their architecture, allowing the inference to end earlier in the edge. The branches estimate the accuracy for a given input. If this estimated accuracy reaches a threshold, the inference ends on the edge. Otherwise, the edge offloads the inference to the cloud to process the remaining DNN layers. However, DNNs for image classification deals with distorted images, which negatively impact the branches' estimated accuracy. Consequently, the edge offloads more inferences to the cloud. This work introduces expert side branches trained on a particular distortion type to improve robustness against image distortion. The edge detects the distortion type and selects appropriate expert branches to perform the inference. This approach increases the estimated accuracy on the edge, improving the offloading decisions. We validate our proposal in a realistic scenario, in which the edge offloads DNN inference to Amazon EC2 instances.
Submission history
From: Roberto Pacheco [view email][v1] Fri, 20 Aug 2021 19:52:55 UTC (33,321 KB)
[v2] Wed, 25 Aug 2021 17:54:34 UTC (33,320 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.