Electrical Engineering and Systems Science > Systems and Control
[Submitted on 20 Aug 2021 (v1), last revised 6 May 2022 (this version, v3)]
Title:Observer Design for Nonlinear Systems with Equivariance
View PDFAbstract:Equivariance is a common and natural property of many nonlinear control systems, especially those associated with models of mechatronic and navigation systems. Such systems admit a symmetry, associated with the equivariance, that provides structure enabling the design of robust and high performance observers. A key insight is to pose the observer state to lie in the symmetry group rather than on the system state space. This allows one to define a globally defined intrinsic equivariant error but poses a challenge in defining internal dynamics for the observer. By choosing an equivariant lift of the system dynamics for the observer internal model we show that the error dynamics have a particularly nice form. Applying the methodology of Extended Kalman Filtering (EKF) to the equivariant error state yields the Equivariant Filter (EqF). The geometry of the state-space manifold appears naturally as a curvature modification to the classical EKF Riccati equation. The equivariant filter exploits the symmetry and respects the geometry of an equivariant system model and yields high performance robust filters for a wide range of mechatronic and navigation systems.
Submission history
From: Robert Mahony Prof. [view email][v1] Fri, 20 Aug 2021 22:06:43 UTC (1,019 KB)
[v2] Mon, 6 Sep 2021 05:36:52 UTC (1,019 KB)
[v3] Fri, 6 May 2022 00:02:07 UTC (1,021 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.