Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Aug 2021 (v1), last revised 17 Aug 2022 (this version, v4)]
Title:Unsupervised Local Discrimination for Medical Images
View PDFAbstract:Contrastive learning, which aims to capture general representation from unlabeled images to initialize the medical analysis models, has been proven effective in alleviating the high demand for expensive annotations. Current methods mainly focus on instance-wise comparisons to learn the global discriminative features, however, pretermitting the local details to distinguish tiny anatomical structures, lesions, and tissues. To address this challenge, in this paper, we propose a general unsupervised representation learning framework, named local discrimination (LD), to learn local discriminative features for medical images by closely embedding semantically similar pixels and identifying regions of similar structures across different images. Specifically, this model is equipped with an embedding module for pixel-wise embedding and a clustering module for generating segmentation. And these two modules are unified through optimizing our novel region discrimination loss function in a mutually beneficial mechanism, which enables our model to reflect structure information as well as measure pixel-wise and region-wise similarity. Furthermore, based on LD, we propose a center-sensitive one-shot landmark localization algorithm and a shape-guided cross-modality segmentation model to foster the generalizability of our model. When transferred to downstream tasks, the learned representation by our method shows a better generalization, outperforming representation from 18 state-of-the-art (SOTA) methods and winning 9 out of all 12 downstream tasks. Especially for the challenging lesion segmentation tasks, the proposed method achieves significantly better performances. The source codes are publicly available at this https URL.
Submission history
From: Huai Chen [view email][v1] Sat, 21 Aug 2021 04:53:19 UTC (3,553 KB)
[v2] Sun, 7 Nov 2021 15:14:38 UTC (3,488 KB)
[v3] Sun, 28 Nov 2021 11:47:41 UTC (3,495 KB)
[v4] Wed, 17 Aug 2022 07:54:02 UTC (4,376 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.