Physics > Medical Physics
[Submitted on 21 Aug 2021]
Title:Developments in Mathematical Algorithms and Computational Tools for Proton CT and Particle Therapy Treatment Planning
View PDFAbstract:We summarize recent results and ongoing activities in mathematical algorithms and computer science methods related to proton computed tomography (pCT) and intensity-modulated particle therapy (IMPT) treatment planning. Proton therapy necessitates a high level of delivery accuracy to exploit the selective targeting imparted by the Bragg peak. For this purpose, pCT utilizes the proton beam itself to create images. The technique works by sending a low-intensity beam of protons through the patient and measuring the position, direction, and energy loss of each exiting proton. The pCT technique allows reconstruction of the volumetric distribution of the relative stopping power (RSP) of the patient tissues for use in treatment planning and pre-treatment range verification. We have investigated new ways to make the reconstruction both efficient and accurate. Better accuracy of RSP also enables more robust inverse approaches to IMPT. For IMPT, we developed a framework for performing intensity-modulation of the proton pencil beams. We expect that these developments will lead to additional project work in the years to come, which requires a regular exchange between experts in the fields of mathematics, computer science, and medical physics. We have initiated such an exchange by organizing annual workshops on pCT and IMPT algorithm and technology developments. This report is, admittedly, tilted toward our interdisciplinary work and methods. We offer a comprehensive overview of results, problems, and challenges in pCT and IMPT with the aim of making other scientists wanting to tackle such issues and to strengthen their interdisciplinary collaboration by bringing together cutting-edge know-how from medicine, computer science, physics, and mathematics to bear on medical physics problems at hand.
Current browse context:
physics.med-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.