Computer Science > Information Theory
[Submitted on 21 Aug 2021 (v1), last revised 26 Apr 2022 (this version, v2)]
Title:Active User Detection and Channel Estimation for Spatial-based Random Access in Crowded Massive MIMO Systems via Blind Super-resolution
View PDFAbstract:This work presents a novel framework for random access in crowded scenarios of multiple-input multiple-output(MIMO) systems. A multi-antenna base station (BS) and multiple single-antenna users are considered in these systems. A huge portion of the system resources is dedicated as orthogonal pilots for accurate channel estimation which imposes a huge training overhead. This overhead can be highly mitigated by exploiting intrinsic angular domain sparsity of massive MIMO channels and the sporadic traffic of users, i.e., few number of users are active to sent or receive data in each coherence interval. In fact, the angles of arrivals (AoAs) coming from active users are continuous parameters and can take any arbitrary values. Besides, the AoAs corresponding to each active user are alongside each other forming a specific cluster. This work revolves around exploiting these features. Specifically, a blind clustering-based algorithm is proposed that not only recovers the transmitted data by users in grant free random access and primary pilots in random access blocks of coherent transmission, but also provides accurate channel estimation. Our approach is based on transforming the unknown variables into a higher dimensional space with matrix variables. An off-grid atomic norm minimization is then proposed to obtain the unknown matrix from only a few observed arrays at the BS. Then, a clustering-based approach is employed to identify which AoAs correspond to which active users. After identifying active users and their AoAs, an alternating-based approach is performed to obtain the channels and data or primary pilots of active users. Simulation results demonstrate the effectiveness of our approach in AoA detection as well as data recovery.
Submission history
From: Sajad Daei Omshi [view email][v1] Sat, 21 Aug 2021 12:15:07 UTC (499 KB)
[v2] Tue, 26 Apr 2022 16:56:34 UTC (3,031 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.