Nuclear Theory
[Submitted on 21 Aug 2021]
Title:Evidence of the triaxial structure of $\boldsymbol{^{129}}$Xe at the Large Hadron Collider
View PDFAbstract:The interpretation of the emergent collective behaviour of atomic nuclei in terms of deformed intrinsic shapes [1] is at the heart of our understanding of the rich phenomenology of their structure, ranging from nuclear energy to astrophysical applications across a vast spectrum of energy scales. A new window onto the deformation of nuclei has been recently opened with the realization that nuclear collision experiments performed at high-energy colliders, such as the CERN Large Hadron Collider (LHC), enable experimenters to identify the relative orientation of the colliding ions in a way that magnifies the manifestations of their intrinsic deformation [2]. Here we apply this technique to LHC data on collisions of $^{129}$Xe nuclei [3-5] to exhibit the first evidence of non-axiality in the ground state of ions collided at high energy. We predict that the low-energy structure of $^{129}$Xe is triaxial (a spheroid with three unequal axes), and show that such deformation can be determined from high-energy data. This result demonstrates the unique capabilities of precision collider machines such as the LHC as new means to perform imaging of the collective structure of atomic nuclei.
Submission history
From: Giuliano Giacalone [view email][v1] Sat, 21 Aug 2021 20:24:02 UTC (815 KB)
Current browse context:
nucl-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.