Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Aug 2021 (v1), last revised 14 Sep 2021 (this version, v2)]
Title:Detection and Localization of Multiple Image Splicing Using MobileNet V1
View PDFAbstract:In modern society, digital images have become a prominent source of information and medium of communication. They can, however, be simply altered using freely available image editing software. Two or more images are combined to generate a new image that can transmit information across social media platforms to influence the people in the society. This information may have both positive and negative consequences. Hence there is a need to develop a technique that will detect and locates a multiple image splicing forgery in an image. This research work proposes multiple image splicing forgery detection using Mask R-CNN, with a backbone as a MobileNet V1. It also calculates the percentage score of a forged region of multiple spliced images. The comparative analysis of the proposed work with the variants of ResNet is performed. The proposed model is trained and tested using our MISD (Multiple Image Splicing Dataset), and it is observed that the proposed model outperforms the variants of ResNet models (ResNet 51,101 and 151).
Submission history
From: Ketan Kotecha Dr [view email][v1] Sun, 22 Aug 2021 09:27:22 UTC (1,185 KB)
[v2] Tue, 14 Sep 2021 11:05:54 UTC (1,775 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.