Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 18 Aug 2021 (v1), last revised 17 May 2022 (this version, v2)]
Title:A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae
View PDFAbstract:We present optical photometry and spectroscopy of the superluminous SN 2002gh from maximum light to $+204$ days, obtained as part of the Carnegie Type II Supernova (CATS) project. SN 2002gh is among the most luminous discovered supernovae ever, yet it remained unnoticed for nearly two decades. Using Dark Energy Camera archival images we identify the potential SN host galaxy as a faint dwarf galaxy, presumably having low metallicity, and in an apparent merging process with other nearby dwarf galaxies. We show that SN 2002gh is among the brightest hydrogen-poor SLSNe with $M_{V} = -22.40 \pm 0.02$, with an estimated peak bolometric luminosity of $2.6 \pm 0.1 \times 10^{44}$ erg s$^{-1}$. We discount the decay of radioactive nickel as the main SN power mechanism, and assuming that the SN is powered by the spin down of a magnetar we obtain two alternative solutions. The first case, is characterized by significant magnetar power leakage, and $M_{\mathrm{ej}}$ between 0.6 and 3.2 $M_{\odot}$, $P_{\mathrm{spin}} = 3.2$ ms, and $B = 5 \times 10^{13}$ G. The second case does not require power leakage, resulting in a huge ejecta mass of about 30 $M_{\odot}$, a fast spin period of $P_{\mathrm{spin}} \sim 1$ ms, and $B\sim 1.6 \times 10^{14}$ G. We estimate a zero-age main-sequence mass between 14 and 25 $M_{\odot}$ for the first case and of about 135 $M_{\odot}$ for the second case. The latter case would place the SN progenitor among the most massive stars observed to explode as a SN.
Submission history
From: Regis Cartier [view email][v1] Wed, 18 Aug 2021 03:25:25 UTC (4,273 KB)
[v2] Tue, 17 May 2022 01:46:34 UTC (4,078 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.