Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Aug 2021 (v1), last revised 30 Aug 2021 (this version, v2)]
Title:A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation
View PDFAbstract:This paper addresses weakly supervised amodal instance segmentation, where the goal is to segment both visible and occluded (amodal) object parts, while training provides only ground-truth visible (modal) segmentations. Following prior work, we use data manipulation to generate occlusions in training images and thus train a segmenter to predict amodal segmentations of the manipulated data. The resulting predictions on training images are taken as the pseudo-ground truth for the standard training of Mask-RCNN, which we use for amodal instance segmentation of test images. For generating the pseudo-ground truth, we specify a new Amodal Segmenter based on Boundary Uncertainty estimation (ASBU) and make two contributions. First, while prior work uses the occluder's mask, our ASBU uses the occlusion boundary as input. Second, ASBU estimates an uncertainty map of the prediction. The estimated uncertainty regularizes learning such that lower segmentation loss is incurred on regions with high uncertainty. ASBU achieves significant performance improvement relative to the state of the art on the COCOA and KINS datasets in three tasks: amodal instance segmentation, amodal completion, and ordering recovery.
Submission history
From: Khoi Nguyen [view email][v1] Mon, 23 Aug 2021 02:27:29 UTC (6,684 KB)
[v2] Mon, 30 Aug 2021 02:17:00 UTC (6,698 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.