Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Aug 2021]
Title:Face Photo-Sketch Recognition Using Bidirectional Collaborative Synthesis Network
View PDFAbstract:This research features a deep-learning based framework to address the problem of matching a given face sketch image against a face photo database. The problem of photo-sketch matching is challenging because 1) there is large modality gap between photo and sketch, and 2) the number of paired training samples is insufficient to train deep learning based networks. To circumvent the problem of large modality gap, our approach is to use an intermediate latent space between the two modalities. We effectively align the distributions of the two modalities in this latent space by employing a bidirectional (photo -> sketch and sketch -> photo) collaborative synthesis network. A StyleGAN-like architecture is utilized to make the intermediate latent space be equipped with rich representation power. To resolve the problem of insufficient training samples, we introduce a three-step training scheme. Extensive evaluation on public composite face sketch database confirms superior performance of our method compared to existing state-of-the-art methods. The proposed methodology can be employed in matching other modality pairs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.